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Abstract. We introduce a novel learning algorithm for noise elimination. Our

algorithm is based on the re-measurement idea for the correction of erroneous ob-

servations and is able to discriminate between noisy and noiseless observations by

using kermel methods. We apply our noise-aware algorithms to the prediction of

stellar population parameters, a challenging astronomical problem. Experimental
results adding noise and useful anomalies to the data show that our algorithm pro-

vides a significant reduction in error, without having to eliminate any observation
from the original dataset.

1 Introduction

Real world data are never as good as we would like them to be and often can suffer from

corruption that may affect data interpretation, data processing, classifiers and models
generated from data as well as decisions based on them. On theother hand, data can also

contain useful anomalies, which often result in interesting findings, motivating further
investigation. Thus, unusual data can be due to several factors including: ignorance

and human mistakes, the inherent variability of the domain, rounding and transcription
errors, instrument malfunction, biases and, most important, rare but correct and useful

behavior. For these reasons it is necessary to develop techniques that allow us to deal
with unusual data.

Data cleaning is a well studied task in many areas dealing with databases, never-

theless, this task requires a large time investment. Indeed, between 30% to 80% of the

data analysis task is spent on cleaning and understanding the data [1]. An expert can

clean the data, but this requires a large time investment, growing with the number of

observations in the data set, which results in expensive costs. From here arises the need

to automate this task. However, this is not easy, since useful anomalies and noise may
look quite similar to an algorithm. For this reason we need to endow to such algorithm

with more human-like reasoning. In this work the re-measurement idea is proposed;
this approach consist of detecting suspect data and, by analyzing new observations of

these objects, substitute errors while retaining anomalies and correct data for a posterior

analysis. This idea is based on the natural way in which a human clarifies his/her doubts

when he/she is not sure about the correctness of a datum. When a person suspects of
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Table 4. Percentage of M.A.E. reduction for the different configurations of training and test sets.
In this experiment all of the suspect observations were substituted by the average of the new
measurements in the noise-aware algorithm.

Training/Test Noisy Random Noise-Aware

Noisy 0.00 0.21 2.81

Random -2.46 -2.7 -1.18

Noise-Aware 5.69 6.74 10.88

were substituted. With this modification, the best result is obtained when both training
and testing data were improved with our algorithm. The improvement is around 11% in
accuracy. The behavior of the random method was similar to that in Table 2.

7 Conclusions and Future Work

We have presented the re-measuring idea as a method for the correction of erroneous

observations in corrupted datasets without eliminating potentially useful observations.

Experimental results showed that the use of a noise-aware algorithm in training sets

improves prediction accuracy using LWLR as learning algorithm. The algorithms were
able to detect and correct 100% of the erroneous observations and around 90% of the

artificial outliers, which resulted in a data quality improvement. Furthermore, we have

shown that the noise-aware algorithms outperformed a method that re-measures ran-

domly in the prediction of stellar population parameters, a difficult astronomical data
analysis problems.

Present and future work includes testing our algorithms on benchmark datasets to
determine their scope of applicability. Also, we plan to apply noise-aware algorithms in
other astronomical domains as well as in other areas, including bioinformatics, medical
diagnosis, and image analysis.
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