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Abstract. We introduce a novel leamning algorithm for noise elimination. Our
algorithm is based on the re-measurement idea for the correction of erroneous ob-
servations and is able to discriminate between noisy and noiseless observations by
using kemnel methods. We apply our noise-aware algorithms to the prediction of
stellar population parameters, a challenging astronomical problem. Experimental
results adding noise and useful anomalies to the data show that our algorithm pro-
vides a significant reduction in error, without having to eliminate any observation
from the original dataset.

1 Introduction

Real world data are never as good as we would like them to be and often can suffer from
corruption that may affect data interpretation, data processing, classifiers and models
generated from data as well as decisions based on them. On the other hand, data can also
contain useful anomalies, which often result in interesting findings, motivating further
investigation. Thus, unusual data can be due to several factors including: ignorance
and human mistakes, the inherent variability of the domain, rounding and transcription
errors, instrument malfunction, biases and, most important, rare but correct and useful
behavior. For these reasons it is necessary to develop techniques that allow us to deal
with unusual data.

Data cleaning is a well studied task in many areas dealing with databases, never-
theless, this task requires a large time investment. Indeed, between 30% to 80% of the
data analysis task is spent on cleaning and understanding the data [1]. An expert can
clean the data, but this requires a large time investment, growing with the number of
observations in the data set, which results in expensive costs. From here arises the need
to automate this task. However, this is not easy, since useful anomalies and noise may
look quite similar to an algorithm. For this reason we need to endow to such algorithm
with more human-like reasoning. In this work the re-measurement idea is proposed;
this approach consist of detecting suspect data and, by analyzing new observations of
these objects, substitute errors while retaining anomalies and correct data for a posterior
analysis. This idea is based on the natural way in which a human clarifies his/her doubts
when he/she is not sure about the correctness of a datum. When a person suspects of
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an object’s observation, a new observation or many more can be obtained to confirm or
discard the observer’s hypothesis.

The proposed methods could be useful in areas such as machine learning, data min-
ing, pattern recognition, data cleansing, data warehousing and information retrieval. In
this work we oriented our efforts to improve data quality and prediction accuracy for
machine learning problems, specifically, for the estimation of stellar population para-
meters, an interesting domain in which an algorithm based on re-measuring is suitable
to test.

The paper is organized as follows: in the next section we present a brief survey of
related works. In Section 3 we introduce the astronomical domain used in this work;
in Section 4 the kemel methods that we used are described. In Section 5 the proposed
algorithms are introduced. In Section 6 experimental results evaluating the performance
of our algorithms are presented. Finally, we summarize our findings and discuss future
directions for this work in Section 7.

2 Related Work

Recent approaches for data cleansing do not distinguish between useful anomalies and
noise, they just eliminate the detected suspect data [2—8]. However, we should not elim-
inate a datum unless we can determine that it is invalid. This often is not possible for
several reasons, including: human-hour cost, time investment, ignorance about the do-
main we are dealing with and even inherent uncertainty. Nevertheless, if we could guar-
antee that an algorithm will successfully distinguish errors from correct observations,
the difficult problem would be solved. As a human does, an algorithm can confirm or
discard a hypothesis by analyzing several measurements of the same object.

The idea of requesting new observations as a strategy for data cleansing has been
little explored. Here we present some related works that deal with anomaly detection
and data cleaning.

In [9] an interactive method for data cleaning that uses the optimal margin classifier
(OMC) is presented. The OMC is used to identify suspect data, suspect observations
are shown to an expert in the domain, who then decides their validity.

Prototype [10] and instance selection [11] implicitly can eliminate instances degrad-
ing the performance of instance-based learning algorithms. Other algorithms saturate a
dataset with the risk of eliminating all objects that could define a concept or class, these
methods include the use of instance pruning trees [8] and the saturation filtering algo-
rithm [4]. Ensembles of classifiers had been successfully used to identify mislabeled
instances in classification problems [12, 5, 13], however, once again the identified in-
stances are deleted from the data set.

In the outlier/anomaly detection area there are many published works, however,
these approaches are intended only for the detection of rare data. The anomaly detec-
tion problem has been approached using statistical [14] and probabilistic knowledge
[15], distance and similarity-dissimilarity functions [16—18], metrics and kernels [19],
accuracy when dealing with labeled data, association rules, properties of patterns and
other specific domain features.
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Variants and modifications to the support vector machine algorithm have been pro-
posed, trying to isolate the outlier class: in [20] an algorithm to find the support of a
dataset, which can be used to find outliers, is presented; in [6] the sphere with minimal
radius enclosing most of the data is found and in [7] the correct class is separated from
the origin and from the outlier class for a given data set.

There are many more methods for anomaly detection than the presented here, how-
ever, we have only presented some of the representative ones. What is important to

notice is that at the moment there are automated approaches for data cleaning that are
concerned with the elimination of useful data.

3 Estimation of Stellar Populations Parameters

In most of the scientific disciplines we are facing a massive data overload, and astron-
omy is not the exception. With the development of new automated telescopes for sky
surveys, terabytes of information are being generated. Such amounts of information
need to be analyzed in order to provide knowledge and insight that can improve our
understanding about the evolution of the universe. Such analysis becomes impossible
using traditional techniques, thus automated tools should be developed. Recently, ma-
chine learning researchers and astronomers have been collaborating towards the goal
of automating astronomical data analysis tasks. Such collaborations have resulted in
the automation of several astronomical tasks. These works include galaxy classification
[21], prediction of stellar atmospheric parameters [22] and estimation of stellar popula-
tion parameters [23].

In this work we applied our algorithms for the prediction of stellar population pa-
rameters: ages, relative contribution, metal content, reddening and redshift. In the re-
maining of this section the data used are briefly described.

3.1 Analysis of Galactic Spectra

Almost all the relevant information about a star can be obtained from its spectrum,
which is a plot of flux against wavelength. An analysis of a galactic spectrum can reveal
valuable information about stellar formation, as well as other physical parameters such
as metal content, mass and shape. The accurate knowledge of these parameters is very
important for cosmological studies and for the understanding of galaxy formation and
evolution. Template fitting has been used to carry out estimates of the distribution of
age and metallicity from spectral data. Although this technique achieves good results, it
is very expensive in terms of computing time and therefore can be applied only to small
samples.

Modeling Galactic Spectra Theoretical studies have shown that a galactic spectrum
can be modeled with good accuracy as a linear combination of three spectra, corre-
sponding to young, medium and old stellar populations, see Figure 1, with their respec-
tive metallicity, together with a model of the effects of interstellar dust in these individ-
ual spectra. Interstellar dust absorbs energy preferentially at short wavelengths, near the
blue end of the visible spectrum, while its effects on longer wavelengths, near the red
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end of the spectrum, are small. This effect is called reddening in the astronomical litera-
ture. Let f(\) be the energy flux emitted by a star or group of stars at wavelength A. The
flux detected by a measuring device can be approximated as d(A) = f(A)(1 — e™™),
where r is a constant that defines the amount of reddening in the observed spectrum and
depends on the size and density of the dust particles in the interstellar medium.

We also need to consider the redshift, which tells us how the light emitted by distant
galaxies is shifted to longer wavelengths, when compared to the spectrum of closer
galaxies. This is taken as evidence that the universe is expanding and that it started in
a Big Bang. More distant objects generally exhibit larger redshifts; these more distant

objects are also seen as they were further back in time, because the light has taken
longer to reach us.
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Fig. 1. Stellar spectra of young, intermediate and old populations.

We build a simulated galactic spectrum given constants c;, ¢z, and c3, with E?=l ¢ =
1 and ¢; > 0, that represent the relative contributions of young, medium and old stel-
lar populations, respectively; their reddening parameters 71,72, 73, and the ages of the
populations a; € {10°,106-3,1066,107,107-3} years, az € {107-6,108,6108-31086}
years, and a3 € {10°,10'0-2} years,

g(A) = 8 ) Gis(my, ag; N)(1 = emi)

i,m=

with m € {0.0004,0.004, 0.008,0.02,0.05} in solar units and m; > ma > mg, finally
we add an artificial redshift Z by:

A =AHZF 1) 00l Z 2
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Therefore, the learning task is to estimate the parameters: reddening (7, r2,73), metal-

licities (my, m2, m3), ages (a1, az, a3), relative contributions (c;, cz, ¢3), and redshift
Z, from the spectra.

4 Kernel Methods

Kernel methods have been shown to be useful tools for pattern recognition, dimension-
ality reduction, denoising, and image processing. In this work we use kernel methods
for dimensionality reduction, novelty detection and anomaly-noise differentiation.

4.1 Kernel PCA

Stellar populations data are formed with instances with dimensionality d = 12134,
therefore, in order to perform experiments in feasible time we need a method for di-
mensionality reduction. Kernel principal component analysis (KPCA) [24] is a relative
recent technique, which takes the classical PCA technique to the feature space, taking
advantage of "kemel functions”. This feature space is obtained by a mapping from the
linear input space to a commonly nonlinear feature space F by ¢ : R¥Y — F,z — X.

In order to perform PCA in F, we assume that we are dealing with centered data,
using the covariance matrix in F, C = } Z;=, &(x;)P(x;)T, we need to find A > 0
and v € F \ {0} satisfying AV = CV. After some mathematical manipulation and
defining a M x M matrix K by

Kij = (®(xi), 8(x;)) M
the problem reduces to A\a = Ka, knowing that there exist coefficients a; (i = 1,...,1)
such that AV = 34 Ai(x;).

Depending on the dimensionality of the dataset, matrix K in (1) could be very ex-
pensive to compute, however, a much more efficient way to compute dot products of
the form (&(x), #(y)) is by using kernel representations k(x, y) = ($(x) - #(y)), which
allow us to compute the value of the dot product in F* without having to carry out the
expensive mapping P.

Not all dot product functions can be used, only those that satisfy Mercer’s theorem
[25]. In this work we used a polynomial kernel (Eq. 2).

k(x,y) = ((x-y) + 1)* )

4.2 Kernel based novelty detection

In order to develop an accurate nose-aware algorithm we need first a precise method
for novelty detection. We decided to use a novelty detection algorithm that has outper-
formed others in an experimental comparison [26]. This algorithm presented in [19]
computes the center of mass for a dataset in feature space by using a kernel matrix K,
then a threshold ¢ is fixed by considering an estimation error (Eq. 3) of the empirical
center of mass, as well as distances between objects and such center of mass in a dataset.

¢=,/2‘¢.(\/§+ 1n1) 3)
n é
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where ¢ = max(diag(K)), and K is the kernel matrix of the dataset with size n x n; §
is a confidence parameter for the detection process. This is an efficient and very precise
method; for this work we used a polynomial kemel function (Eq. 2) of degree 1.

5 Noise-Aware Algorithms

Before introducing the noise-aware algorithms, the re-measuring process must be clar-
ified. Given a set of instances: X = {z;,22,...,Tn}, with z; € R" (generated from a
known and controlled process by means of measurement instruments or human record-
ing), we have a subset S C X of instances z{ with S = {z§,z3,...,z5, }andm << n
that, according to a method for anomaly detechon are suspect to be incorrect observa-
tions. Then, the re-measunng process consists of generating another observation " for
each of the m objects, in the same conditions and using the same conﬁguratlon that
when the original observations were made.

For each Instance i in t

Detect t-suspect objects g bopldi s G}
Data |—» | with the kemel-based | — 1 e <0
preprocessin novelty o ={ round(cl) othernime
detection algorithm
no yes

A N
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End observation of i
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Outier Koy, = Kk(i. y;)

measurement, yes

f_Lj ,,‘ah 2 K,,,zzh AN
End ci=ci*1 —

‘——ll_’ \ Clhz Cl=1

Fig. 2. Block diagram of the base noise-aware algorithm.

In Figure 2 the base noise-aware algorithm is shown. The data preprocessing module
includes dimensionality reduction, scaling data, feature selection or similar necessary
processes. In the next step, suspect data are identified by using an anomaly detection
method. Then, a confidence level cl is calculated; this cl indicates how rare an object is,
and it can be used to determine the number of new measurements to obtain for each of
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the suspicious instances. cl is obtained from the distance of the suspect instances to the
center of mass of the full data set, and it is defined in Eq. (4).

i 1 iflog(d; *C) <0 4
¥ round(log(d; * C)) otherwise )

Where d; is the distance in feature space of the suspect instance z1 to the center of mass
of the full data set, and C is a scaling constant.

For the anomaly-noise discrimination we decided to use a kernel, since kernels can
be used to calculate similarity between objects [25]. Several kernels were tested, but the

kernel that best distinguished among dissimilar instances was the extended radial basis
function (Eq. 5) with ¢ = 0.25.

— = 2
Kz,y) = exp (——"2“”02—""—) ©)

We generated simple rules to discriminate among noise, outliers and common instances.
If an object is correct, the algorithm leaves that object intact, otherwise, the noisy ob-

servation is substituted by one in the new measurements. The generated decision rules
were:

O = { outlier if kavg > 0.8and ¢l > 2

{not — outlier if kayg > 0.99and cl =1
noise otherwise

where kqpg = 5 E;':l k(z,y;), is the average of the kernel evaluations given a suspect
instance z and its ¢/ new measurements y, ..., yq as inputs. As we can see, outliers
and common instances will be detected with only a new observation, while noise will be
re-measured a few times, finally all of the noise is substituted by a correct measurement
or in other approach by the average of the re-measurements.

The algorithm from Figure 2 can be used for cleaning datasets, eliminating all of
the noise and retaining correct observations. Now we have to describe how to take
advantage of it to improve the results of a machine learning task.

In Figure 3, the base noise-aware algorithm is adapted to predict the stellar pop-
ulation parameters in the astronomical data, using locally-weighted linear regression
LWLR [27], a well known machine learning algorithm.

We have divided the data cleaning process into two phases: training and testing.
Data cleaning in training is just what we have descibed before in the base algorithm.
Data cleaning for testing data is somewhat different, in this setting we have a new
data set of p (unseen) new observations. Then, the algorithm uses the distance of each
test observation to the center of mass of the improved training set to determine the
set of suspicious test data. Suspect observations are re-measured. Then, the erroneous
observations are differentiated from correct observations and wrong data are substituted
by the average of their measurements, while for correct rare observations the original
measurement was used. In the case of correct observations we could also use the average
of the measurements, which, as we will see, results in better accuracy in experiments
with noisy data.
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Fig. 3. Block diagram of a noise-aware machine learning algorithm.

6 Experimental Results

We performed several experiments in order to test the performance of our algorithms. In
each experiment we generated a dataset of 200 observations for training and 3 datasets
of 100 observations for testing. We used LWLR as learning algorithm considering a
neighborhood of 80 objects. All results presented here are averages over the three test
datasets.

In the first experiment we tested the base noise-aware algorithm inserting noise and
outliers to the datasets. For this experiment all of the data were affected with low-level
noise; 5% of the data were affected with extreme gaussian noise with zero mean, and
varying the value of o2, as shown in Figure 4. Furthermore, 5% of the data were affected
by inserting useful anomalies.

Useful anomalies were simulated in a realistic way. Commonly, redshift values lie in
the range (0 < Z < 0.4); redshifts higher than 1 are useful anomalies for astronomers.
In astronomy, locating galaxies with redshifts over 2 is very useful for galaxy evolution
research. We simulated in 5% of the data redshifts between2 and 4 (2 < Z < 4).

The experiment consists of applying the algorithm from Figure 3, to the prediction
of the stellar population parameters, using a training dataset previously improved with
the algorithm from Figure 2. Results of these experiments are shown in Table 1; the
mean absolute error (M.A.E.) reduction is presented. We report results using different
configurations for training and testing. We can see that the best results are those ob-
tained when the training set has been improved with our algorithm. The best result was
obtained when the original (affected) test data were used, however, there is not a sig-
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Table 1. Percentage of M.A.E. reduction for the different configurations on the training and test
sets. Noisy is the original (affected) data set, and noise-aware is the data that have been previously

improved with our algorithm. The first column indicates the training data used, while the first row
indicates the test data used.

Training/Test|Noisy|Noise-Aware
Noisy 0 0.01
Noise-Aware | 4.19 3.46

nificant difference. What is important to notice is that an improvement in the training
set results in an improvement of the prediction accuracy in the test sets. Something re-
markable, that is not shown in the tables, is that the noise-aware algorithm detected 14
of the 15 total artificially-added anomalies on the test datasets. Furthermore, 100% of
the noisy observations were corrected, which would result in data quality improvement
without a loss of useful information. In order to determine how much the heuristics im-

O T R e T T e T T T T
Avwoin -

Fig. 4. Sample spectra with the different levels of noise added. In all of the figures, the noise is
Gaussian with zero mean and varying the standard deviation in each case.

plemented in the noise-aware algorithms help to improve the accuracy, we performed
another experiment. In the following experiments we compareq ?he perfc?rmance of our
algorithm with one that re-measures randomly, w1.thout repetition; again, we divided
the data into training and test sets. For these experiments, all of the dgta sets were af-
fected with 4 different noise levels (gaussian, with mean zero. and varying the standard
deviations), see Figure 4. The experiment consists of comparing the noise-aware alg(_)-
rithm form Figure 3 with one that randomly chooses instances to re-measure. In this
scenario, we have the capability of performing R new measurements. Therefor.e, the
random method performs a new measurement of R_ ob}ects_ chosen .randomly, without
repetition. On the other hand, the noise-aware algorithm (Figure 3) iterates on the data
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set, until R re-measurements are made. That is, in each iteration the algorithm identifies,
re-measures and corrects erroneous observations. We substituted the noisy observations
by the average of the new measurements, due to the nature of the noise added. The re-
sults for the training phase, with R = 200, 100, 66, are presented in Table 3. We can

Table 2. Percentage of M.A.E. reduction, Noisy is the original (affected) dataset; noise-aware is
the dataset that has been improved with our algorithm; random is the dataset improved with the
method that re-measures randomly.

R =200
% Time
Noisy 0 0
Random —6.35 |273.86
Noise-Aware| 15.54 [298.56
R =100
Noisy 0 0
Random -7.11 | 1389
Noise-Aware| 14.82 |154.38
R =66
Noisy 0 0
Random —1.39 |90.79
Noise-Aware| 9.65 |147.40

Table 3. Percentage of M.A.E. reduction in the training phase for different values of R, for the
random method and the noise-aware algorithm.

Training/Test|Noisy| Random|Noise-Aware
Noisy 0.00 | 2.88 2.12
Random |—3.4| —5.86 —2.07

Noise-Aware [ 6.15| 7.01 6.61

see from Table 3 that there is a clear improvement by using our algorithm instead of
the one that re-measures randomly. Indeed, when the random method is used there is
a slight decrease in accuracy. The improvement is large when we iterate our algorithm
until 200 new measurements are made. Moreover, the difference in processing time is
small. The performance of the algorithms in the test sets can be seen in Table 2. Again,
we presented different configurations for training and testing. From Table 2, we can
observe that the best result was obtained when we used the improved training data. For
testing, the best result was obtained when the random algorithm was used. However, the
difference in accuracy is small. We performed the same experiment but instead of using
the original measurement for low and medium noise affected observations, we used the
average of the new-measurements. Results of this experiment are shown in Table 4. We
can see that there is a clear improvement in our algorithm when all of the suspect data
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Table 4. Percentage of M.A.E. reduction for the different configurations of training and test sets,

In this experiment all of the suspect observations were substituted by the average of the new
measurements in the noise-aware algorithm.

Training/Test| Noisy [Random|Noise-Aware
Noisy 0.00 | 0.21 2.81
Random |-2.46] -2.7 —1.18

Noise-Aware | 5.69 | 6.74 10.88

were substituted. With this modification, the best result is obtained when both training
and testing data were improved with our algorithm. The improvement is around 11% in
accuracy. The behavior of the random method was similar to that in Table 2.

7 Conclusions and Future Work

We have presented the re-measuring idea as a method for the correction of erroneous
observations in corrupted datasets without eliminating potentially useful observations.
Experimental results showed that the use of a noise-aware algorithm in training sets
improves prediction accuracy using LWLR as learning algorithm. The algorithms were
able to detect and correct 100% of the erroneous observations and around 90% of the
artificial outliers, which resulted in a data quality improvement. Furthermore, we have
shown that the noise-aware algorithms outperformed a method that re-measures ran-
domly in the prediction of stellar population parameters, a difficult astronomical data
analysis problems.

Present and future work includes testing our algorithms on benchmark datasets to
determine their scope of applicability. Also, we plan to apply noise-aware algorithms in
other astronomical domains as well as in other areas, including bioinformatics, medical
diagnosis, and image analysis.
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